Best Practice: Earthwork Volume Calculations

Don Lee, Consultant – Bentley Global Services
Best Practice: Earthwork Volume Calculations
Dirt, Rock, Concrete, and Asphalt

- “It’s in the Civil DNA”, we quantify everything.
- Critical to Decision Making
 - Optioneering to Final Design
 - Dictates Cost
Volume Methods

- Analyze Volume Tools
 - Terrain Model to Terrain Model
 - Terrain Model to Plane
 - Terrain Model to Volume

- Component Quantities
 - Dynamic Sections

- Element Component Quantities

- MicroStation Element Information
 - ECX Attribution and Imodels

- Create Cut & Fill Volumes

- Cross Sectional
 - End Area Volumes
Volumes Methods

- How is it Calculated?
- What is Calculated?
- When can it be Calculated?
- What outputs can I get?
- Uses and Examples
Analyze Volume Tools

- Analyze Volume Tools
 - Terrain Model to Terrain Model
 - Terrain Model to Plane
 - Terrain Model to Volume
- Shrink and Swell Factors
- Save Results Output to CAD
- Definable Boundary to Limit Extent
- Prismoidal Calculation
Analyze Volume Tools - Terrain to Terrain
Uses

- Stockpiles
- Strip Mining
- Basin & Detention Pond Volumes
- Basis Earthwork
- Staged Earthwork
- Used Anytime…
Analyze Volume Tools - Terrain to Plane
Corridor Component Quantities

• Component Quantities
 ▪ Corridors & Linear Template Objects

• Provides Volumes & Areas
 ▪ Volumes for Closed Components
 – Asphalt/Concrete/Curb
 ▪ Areas for Non-Closed Components
 – Uses Seeding/Top Soil

• Unit Cost to Enable Quick Estimate

• EAV Results based off Template Drop Interval & Design Stage

 Does not take account of Clipping*
Closed vs. Open Components
Component Quantities Uses

- Quick Estimate
 Line & Grade Submissions
- Conceptual to Preliminary Design
- Overlay Alternatives
- Design Tool
Element Component Quantities

- Summation All components in Objects Selected

- Objects Supported
 - Corridors
 - Linear Templates
 - Surface Template
 - Civil Cells

- Provides Volumes & Areas
 - Volumes for Closed Components
 - Asphalt/Concrete/Curb
 - Areas for Non-Closed Components
 - Uses Seeding/Top Soil

- Unit Cost to Enable Quick Estimate
Element Component Quantities

- Prismoidal Approach
 - Values are coming from the 3D Model
 - More Accurate than EAV approach
 - MicroStation Element Info

- Accounts for Clipping
Element Component Quantities
Element Component Quantities Uses

- Quick Estimate of Components
- Conceptual to Final Design
- Does not include Earthwork Cut & Fill
- Excellent for Quantity Take-Off

Work in Conjunction with Earthwork tools
MicroStation Element Information

- Core MicroStation…available to all.
 - Drafter to Construction
- Volume & Area for Closed Component
- Area for Open Components
- MicroStation Volume Tool
 - Selection Set is Support
- Component Healing with Clipping
Volumes and Area Values carries to i-model

***Through ODBC Drivers to Export to Excel, Access, and more....
MicroStation Element Information Uses

- Values Persisted to all Stakeholders
- Conceptual to Final Design
- Excellent for Quantity Take-Off
- BIM
MicroStation Volume of Component Element
Create Cut & Fill Volumes

- Ability to Create Closed 3D meshes of Cut and Fill

- Prismoidal Approach
 - Formulates Between Terrain Models
 - Creates and Symbolizes different Elements for Cut & Fill
Track Cut and Fill with Ballast Elements
Ballast Cut and Fill Element Volumes
Ballast Cut and Fill Element Volumes
Create Cut & Fill Volumes Uses

- Values Persisted to all Stakeholders
 MicroStation Element
- Conceptual to Final Design
- Excellent for 3D Quantity Take-Off of Earthwork
- Construction & Sequencing
- 4D and 5D Simulation
- Earthwork is now included into BIM
Cross Sectional

- **End Area Volumes**
 - The “Old” but Accepted Method
 - Verify Calculation on Paper

- **Equation**

\[V = \frac{A_1 + A_2}{2} L \]

Where:
- \(V \) = Volume
- \(A_1 \) = Cross section area of first side
- \(A_2 \) = Cross section area of second side
- \(L \) = Length between the two areas

- **Required Cross Sections**
 - Published/Submission

- **Accuracy Dependent on Cross Section Frequency**
End Area Volumes

- Unsuitable Materials by Station
- Classifications
- Compaction/Expansion by Station
- Volume Exceptions
- Added Quantities
- Forced Balance
- Mass Haul Diagram
Cross Sectional Uses

- Standard & Accepted Delivery Method
- Road/Rail/Mining
- Conceptual to Final Design
 Needed only for Submissions

Future Gold Standard will be?
Thank you for your time
Have a great conference